If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-12000=0
a = 1; b = 10; c = -12000;
Δ = b2-4ac
Δ = 102-4·1·(-12000)
Δ = 48100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48100}=\sqrt{100*481}=\sqrt{100}*\sqrt{481}=10\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{481}}{2*1}=\frac{-10-10\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{481}}{2*1}=\frac{-10+10\sqrt{481}}{2} $
| 4(y−8)=20 | | -4x-7x+13=1-5x | | 5x+6/3x-9=2.33 | | x=x(12-2x)(9-2x) | | 40x+21x-3=180 | | -12+1y=4y-21 | | -2(n+7)=1 | | 11x+8=8x+2(x+5) | | 2(x-7)=4x-6x+6 | | 3b-5=10+5 | | -7m+2=-4m-13 | | x-⅓=5/12 | | 2(3v+4)+5(2v−3)= | | x2+4x=71 | | 9-b+6b=30 | | (2x+1)^2+(2x+1)(x+3)=0 | | t-⅓=5/12 | | x(10.01)+(11.01)(1-x)=10.81 | | (180-151)+65+x=180 | | (x+1)(x+2)-5(x+2)=0 | | 1w+17=53-1w | | -7a÷8-2=4 | | -6+7v=3v+2 | | (2x−2)+(x+1)+x+(x+1)=75 | | -7a÷8-2=1 | | 1+3x=4x | | 2/x=x/32= | | v/3-13=3 | | 31+7w=44 | | 12x+18+10x+12=26 | | 2x^2-46x+152=0 | | 3(x-2)(x+3)=0 |